bioRxiv preprint doi: https://doi.org/10.1101/2022.10.13.512134; this version posted October 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Role of spike in the pathogenic and antigenic behavior of SARS-CoV-2 BA.1							
2	Omicron							
3	Da-Yuan Chen ^{1,2} , Devin Kenney ^{2,3} , Chue Vin Chin ^{1,2} , Alexander H. Tavares ^{1,2} , Nazimuddin							
4	Khan ^{1,2} , Hasahn L. Conway ^{1,2} , GuanQun Liu ⁴ , Manish C. Choudhary ^{5,6} , Hans P. Gertje ² , Aoife							
5	K. O'Connell ² , Darrell N. Kotton ^{7,8} , Alexandra Herrmann ⁹ , Armin Ensser ⁹ , John H. Connor ^{2,3} ,							
6	Markus Bosmann ^{10,11,12} , Jonathan Z. Li ^{5,6} , Michaela U. Gack ⁴ , Susan C. Baker ¹³ , Robert N.							
7	Kirchdoerfer ¹⁴ , Yachana Kataria ¹¹ , Nicholas A. Crossland ^{2,11} , Florian Douam ^{2,3} , Mohsan							
8	Saeed ^{1,2#}							
9								
10	1. Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA							
11	2. National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA,							
12	USA							
13	3. Department of Microbiology, Boston University School of Medicine, Boston, MA, USA							
14	4. Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, USA							
15	5. Brigham and Women's Hospital, Boston, MA, USA							
16	6. Harvard Medical School, Cambridge, MA, USA							
17	7. Center for Regenerative Medicine of Boston University and Boston Medical Center,							
18	Boston, MA, USA							
19	8. The Pulmonary Center and Department of Medicine, Boston University School of							
20	Medicine, Boston, MA, USA							

21	9. Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-
22	Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
23	10. Pulmonary Center, Boston University School of Medicine, MA, USA
24	11. Department of Pathology and Laboratory Medicine, Boston University School of
25	Medicine, MA, USA
26	12. Center for Thrombosis and Hemostasis, University Medical Center of the Johannes
27	Gutenberg-University, Mainz, Germany
28	13. Department of Microbiology and Immunology, and Infectious Disease and Immunology
29	Research Institute, Stritch School of Medicine, Loyola University, Chicago, Maywood, IL,
30	USA
31	14. Department of Biochemistry, College of Agricultural and Life Sciences, University of
32	Wisconsin, Madison, WI, USA
33	#Correspondence: msaeed1@bu.edu
34	
35	
36	
37	
38	
40	

41 The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is 42 highly transmissible, even in fully vaccinated individuals, and causes attenuated disease 43 compared with other major viral variants recognized to date¹⁻⁷. The Omicron spike (S) 44 protein, with an unusually large number of mutations, is considered the major driver of these phenotypes^{3,8}. We generated chimeric recombinant SARS-CoV-2 encoding the S 45 46 gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this 47 virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly 48 escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor-49 binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell 50 lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, 51 non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality 52 rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S. 53

54 As of March 2022, the successive waves of the coronavirus disease 2019 (COVID-19) 55 pandemic have been driven by five major SARS-CoV-2 variants, called variants of concern (VOC); Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2 and AY lineages), and Omicron 56 57 (BA lineages)⁹. Omicron is the most recently recognized VOC that was first documented in South Africa, Botswana, and in a traveler from South Africa in Hong Kong in November 2021 (GISAID 58 59 ID: EPI_ISL_7605742)^{10,11}. It quickly swept through the world, displacing the previously dominant 60 Delta variant within weeks and accounting for the majority of new SARS-CoV-2 infections by 61 January 2022¹²⁻¹⁶. Omicron has at least three lineages, BA.1, BA.2, and BA.3, with the former 62 being the most predominant lineage worldwide^{13,17-19}. BA.1 (hereinafter referred to as Omicron)

exhibits a remarkable escape from infection- and vaccine-induced humoral immunity^{4,5,20,21}.
Further, it is less pathogenic than other VOCs in humans and *in vivo* models of infection^{1-3,22-26}.
Omicron differs from the prototype SARS-CoV-2 isolate, Wuhan-Hu-1, by 59 amino acids; 37 of
these changes are in the S protein, raising the possibility that S is at the heart of Omicron's
pathogenic and antigenic behavior.

68 Spike mutations only partially affect the replication of Omicron in cell culture

69 The Omicron S protein carries 30 amino acid substitutions, 6 deletions, and one three-70 amino acid-long insertion compared to Wuhan-Hu-1 (Fig. 1a,b). Twenty-five of these changes are 71 unique to Omicron relative to other VOCs, although some of them have been reported in waste 72 water and minor SARS-CoV-2 variants²⁷⁻²⁹. To test the role of the S protein in Omicron phenotype, 73 we generated a chimeric recombinant virus containing the S gene of Omicron (USA-lh01/2021) in the backbone of an ancestral SARS-CoV-2 isolate (GISAID EPI ISL 2732373)³⁰ (Fig. 1c). To 74 75 produce this chimeric Omi-S virus, we employed a modified form of cyclic polymerase extension 76 reaction (CPER) (Extended Data Fig. 1) that yielded highly concentrated virus stocks, containing 77 0.5-5 x 10⁶ plaque-forming units (PFU) per ml, from transfected cells within two days of 78 transfection (Fig. 1d,e), obviating the need for additional viral amplification^{31,32}.

We first compared the infection efficiency of Omi-S with an ancestral virus and Omicron in cell culture (**Fig. 2a**). For this, we infected ACE2/TMPRSS2/Caco-2³³ and Vero E6 cells with Omi-S, a recombinant D614G-bearing ancestral virus (GISAID EPI_ISL_2732373)³⁰, and a clinical Omicron isolate (USA-Ih01/2021) at a multiplicity of infection (MOI) of 0.01 and monitored viral propagation by flow cytometry and the plaque assay. The ancestral virus [hereinafter referred to as wild-type (WT)] and Omi-S spread fast in ACE2/TMPRSS2/Caco-2 cells, yielding 89% and

85 80% infected cells, respectively, at 24 hours post-infection (hpi) (Fig. 2b). In contrast, Omicron 86 replicated slower, leading to 48% infected cells at 24 hpi. A similar pattern was seen in Vero E6 87 cells, where 60% and 41% of cells were positive for WT and Omi-S, respectively, at 48 hpi, in 88 contrast to 10% positive cells for Omicron (Fig. 2c). The plaque assay showed that although both 89 Omi-S and Omicron produced lower levels of infectious virus particles compared with WT, the 90 viral titer of Omi-S was significantly higher than that of Omicron. In ACE2/TMPRSS2/Caco-2 cells, 91 Omi-S produced 5.1-fold (p = 0.0006) and 5.5-fold (p = 0.0312) more infectious particles than 92 Omicron at 12 hpi and 24 hpi, respectively (Fig. 2d). Similarly, in Vero E6 cells, the infectious 93 virus titers of Omi-S were 17-fold (p = 0.0080) and 11-fold (p = 0.0078) higher than that of Omicron 94 at 24 hpi and 48 hpi, respectively (Fig. 2e). The difference between viruses became less obvious 95 at later time points due to higher cytotoxicity caused by Omi-S compared with Omicron (Fig. 2f). 96 The higher infection efficiency of Omi-S relative to Omicron was also reflected in the plague size: 97 while WT produced the largest plagues (~ 4.1 mm), the size of Omi-S plagues (~2.2 mm) was 2-98 fold (p < 0.0001) larger than that of Omicron plagues (~1.1 mm) (**Fig. 2g**). These results indicate 99 that while mutations in the S protein influence the infection efficiency of Omicron, they do not fully 100 explain the infection behavior of Omicron in cell culture.

We next expanded our studies to lung epithelial cells, which are a major viral replication site in patients with severe COVID-19. Accordingly, we employed human induced pluripotent stem cell-derived lung alveolar type 2 epithelial (iAT2) cells. AT2 cells represent an essential cell population in the distal lung and constitute one of the primary targets of SARS-CoV-2 infection³⁴⁻ ³⁶. We infected iAT2 cells, grown as an air-liquid interface (ALI) culture, at an MOI of 2.5 and monitored the secretion of viral progeny on the apical interface of cells at 48 hpi and 96 hpi. In

congruence with the results obtained from cell lines, WT SARS-CoV-2 produced the highest levels of infectious virus particles (**Fig. 2h**). Among the Omi-S and Omicron, the former yielded ~5-fold (p = 0.0008) higher infectious viral titer at 48 hpi. The viral titers for WT and Omi-S decreased at 96 hpi compared with 48 hpi due to the cytopathic effect (CPE) of infection. However, no CPE was seen for Omicron, leading to sustained production of infectious virions. Overall, these results corroborate the conclusion that mutations in S do not fully account for the attenuated replication capacity of Omicron in cultured human cells.

114 Spike has an appreciable but minimal role in Omicron pathogenicity in K18-hACE2 mice

115 To examine if Omi-S exhibits higher *in vivo* fitness compared with Omicron, we investigated 116 the infection outcome of Omi-S relative to WT SARS-CoV-2 and Omicron in K18-hACE2 mice. In 117 agreement with the published literature^{3,37-39}, intranasal inoculation of mice (aged 12-20 weeks) 118 with Omicron (10⁴ PFU per animal) caused no significant weight loss, whereas inoculation with 119 WT virus triggered a rapid decrease in body weight with all animals losing over 20% of their initial 120 body weight by 8 days post-infection (dpi) (Fig. 3a). Importantly, 80% of animals infected with 121 Omi-S also lost over 20% of their body weight by 9 dpi (Fig. 3a and Extended Data Fig. 2a). The 122 evaluation of clinical scores (a cumulative measure of weight loss, abnormal respiration, aberrant 123 appearance, reduced responsiveness, and altered behavior) also revealed a similar pattern; while 124 Omicron-infected mice displayed little to no signs of clinical illness, the health of those infected with WT and Omi-S rapidly deteriorated, with the former inflicting a more severe disease (p =125 126 0.0102) (Fig. 3b and Extended Data Fig. 2b). Since SARS-CoV-2 causes fatal infection in K18-127 hACE2 mice^{3,40,41}, we leveraged this situation to compare the animal survival after viral infection. 128 In agreement with the results of body-weight loss and clinical score, WT and Omi-S caused

mortality rates of 100% (6/6) and 80% (8/10), respectively. In contrast, all animals infected with Omicron survived (**Fig. 3c**). These findings indicate that the S protein is not the primary determinant of Omicron's pathogenicity in K18-hACE2 mice.

132 Next, we compared the virus propagation of Omi-S with Omicron and WT SARS-CoV-2 in 133 the lungs of K18-hACE2 mice. The mice (12-20 weeks old) were intranasally challenged with 10⁴ 134 PFU (7 mice per virus), and their lungs were collected at 2 and 4 dpi for virological and histological 135 analysis. Consistent with in vitro findings, the infectious virus titer in the lungs of WT-infected mice 136 was higher than that detected in mice infected with other two viruses (**Fig. 3d**). Notably however, 137 Omi-S-infected mice produced 30-fold (p = 0.0286) more infectious virus particles compared with 138 Omicron-infected mice at 2 dpi. The titer decreased at 4 dpi for WT- and Omi-S-infected mice, yet 139 it showed an increasing trend for Omicron-infected animals, pointing to the possibility of mild but 140 persistent infection by Omicron in K18-hACE2 mice.

141 To evaluate the viral pathogenicity in the lungs, we performed histopathological analysis of 142 the lung tissue of infected K18-hACE2 mice. As previously reported^{3,42}, an extensive near-diffused immunoreactivity of the SARS-CoV-2 S protein was detected in lung alveoli of mice infected with 143 WT virus (Fig. 3e). In contrast, Omi-S and Omicron infection produced localized foci of alveolar 144 145 staining with fewer foci for Omicron compared with Omi-S. The most striking phenotype was seen 146 in bronchiolar epithelium. While Omi-S virus caused a severe bronchiolar infection with around 147 15-20% of bronchioles being positive for the S protein in all mice examined at 2 dpi, less than 1% 148 bronchioles were S-positive in Omicron-infected mice (Fig. 3f). Further, bronchiolar infection was 149 associated with epithelial necrosis in Omi-S-infected mice, as determined through serial 150 hematoxylin and eosin (H&E) section analysis, whereas no histological evidence of airway injury

151 was observed in Omicron-infected mice (**Extended Data Fig. 3**). This suggests that the replication 152 of Omicron in mice lungs, particularly in bronchioles, is substantially attenuated compared with 153 Omi-S, supporting our conclusion that mutations in the S protein are only partially responsible for 154 the attenuated pathogenicity of Omicron.

155 Mutations in the spike RBM are major drivers of Omicron's escape from neutralization

156 Next, we examined if Omi-S captures the immune escape phenotype of Omicron. A large 157 body of literature has demonstrated extensive escape of Omicron from vaccine-induced humoral 158 immunity ^{4,10,43}. We compared the *in vitro* neutralization activity of sera obtained from vaccinated 159 individuals against the SARS-CoV-2 Washington isolate (USA-WA1/2020), Omi-S, and Omicron. 160 Sera collected within two months of the second dose of mRNA-1273 (Moderna mRNA vaccine; n 161 = 12) or BNT162b2 (Pfizer-BioNTech mRNA vaccine; n = 12) vaccine were included (Extended 162 **Data Table 1**). We performed a multicycle neutralization assay using a setting in which the virus 163 and neutralizing sera were present at all times, mimicking the situation in a seropositive individual. 164 All sera poorly neutralized Omicron, with 11.1-fold (range: 4.4- to 81.2-fold; p < 0.0001) lower half-165 maximal neutralizing dilution (ND₅₀) for Omicron compared with WA1 (Fig. 4a,b). In fact, around 80% of samples failed to completely neutralize Omicron at the highest tested concentration 166 167 (Extended Data Fig. 4). Notably, Omi-S exhibited identical ND₅₀ values to Omicron (11.5-fold 168 lower than that of WA1; p < 0.0001) (Fig. 4a,b), suggesting that the Omicron S protein, when 169 incorporated into a WT virus, behaves the same way as in Omicron.

The SARS-CoV-2 S protein comprises two domains: the S1 domain, which interacts with the ACE2 receptor, and the S2 domain, which is responsible for membrane fusion⁴⁴. Within the S1 domain lie an N-terminal domain (NTD) and a receptor-binding domain (RBD), which harbors 173 the receptor-binding motif (RBM) that makes direct contact with the ACE2 receptor⁴⁵. The NTD of 174 Omicron S carries 11 amino acid changes, including 6 deletions and one three-amino acid-long 175 insertion, whereas the RBD harbors 15 mutations, 10 of which are concentrated in the RBM (Fig. 176 **1a,b**). Both NTD and RBD host neutralizing epitopes⁴⁶⁻⁵⁰, but the RBD is immunodominant and 177 represents the primary target of the neutralizing activity present in SARS-CoV-2 immune sera^{50,51}. 178 To determine if the neutralization resistance phenotype of Omicron is caused by mutations in a 179 particular S domain, we generated two groups of chimeric viruses. The first group comprised the 180 WA1 virus carrying the NTD, RBD, or RBM of Omicron (Fig. 4c), and the second group consisted of Omi-S virus bearing the NTD, RBD, or RBM of WA1 (Fig. 4d). The neutralization assay showed 181 182 that mutations in the RBM were the major cause of Omicron's resistance to vaccine-induced 183 humoral immunity: replacing the RBM of WA1 with that of Omicron decreased ND₅₀ by 5.4-fold (p 184 < 0.0001), and conversely, substituting the RBM of Omi-S with that of WA1 increased ND₅₀ by 5.6-fold (p = 0.0003) (Fig. 4c,d). The fact that none of the RBM-swap viruses achieved the 185 186 difference of ~11-fold seen between WA1 and Omi-S suggests that mutations in other parts of S also contribute to vaccine resistance. 187

To investigate if specific mutations in Omicron RBM drive vaccine escape, we generated two additional panels of recombinant viruses, one with WA1 spike carrying Omicron RBM mutations, either singly or in combination (**Fig. 4e**), and the other with Omicron spike lacking the same set of mutations (**Fig. 4f**). Two WA1 mutants, mutant 3 (carrying E484A substitution) and mutant 4 (bearing a cluster of five substitutions Q493R, G496S, Q498R, N501Y, Y505H) exhibited a moderate but statistically significant decrease of 1.4-fold (p = 0.0002) and 1.8-fold (p = 0.0003) in ND₅₀ values, respectively, compared with WA1 (**Fig. 4e**). The opposite was observed when these mutations were removed from Omicron S; the Omicron mutant 3 (lacking E484A substitution) and mutant 4 (lacking Q493R, G496S, Q498R, N501Y, Y505H) had a 1.9-fold (p =0.0082) and 3.1-fold (p = 0.0025) higher ND₅₀ values compared with Omicron (**Fig. 4f**). Since none of the mutants captured the overall phenotype of Omicron, we assume that the vaccine escape is a cumulative effect of mutations distributed along the length of the S protein. It is possible that mutations alter the conformation of Omicron S in such a manner that most of the immunodominant neutralizing epitopes are disrupted and become unavailable for neutralization.

202 **DISCUSSION**

203 This study provides important insights into Omicron pathogenicity. We show that spike, the 204 single most mutated protein in Omicron, has an incomplete role in Omicron attenuation. In *in vitro* 205 infection assays, the Omicron spike-bearing ancestral SARS-CoV-2 (Omi-S) exhibits much higher 206 replication efficiency compared with Omicron. Similarly, in K18-hACE2 mice, Omi-S contrasts with 207 non-fatal Omicron and causes a severe disease leading to around 80% mortality. This suggests 208 that mutations outside of spike are major determinants of the attenuated pathogenicity of Omicron 209 in K18-hACE2 mice. Further studies are needed to identify those mutations and decipher their 210 mechanisms of action.

One potential limitation of our study is the use of K18-hACE2 mice for pathogenesis studies instead of the primate models that have more similarities with humans^{52,53}. It should however be noted that the K18-hACE2 mouse model is a well-established model for investigating the lethal phenotype of SARS-CoV-2^{3,42,54-56}. While these mice develop lung pathology following SARS-CoV-2 infection, mortality has been associated with central nervous system involvement due to viral neuroinvasion^{42,57}. The fact that infection with Omi-S, but not with Omicron, elicits neurologic

signs, such as hunched posture and lack of responsiveness, in K18-hACE2 mice suggests that
the neuroinvasion property is preserved in Omi-S, and the determinants of this property lie outside
of the spike protein.

220 We found that while the ancestral virus mainly replicates in lung alveoli and causes only 221 rare infection of bronchioles in K18-hACE2 mice. Omi-S with isogenic ancestral virus backbone 222 exhibits higher propensity to replicate in bronchiolar epithelium. This is consistent with a hamster 223 study demonstrating higher predilection of Omicron for bronchioles¹. In vitro studies have also showed that while Omicron replicates poorly in lower lung cells⁵⁸, it causes a robust infection in 224 225 bronchiolar and nasal epithelial cells⁵⁸⁻⁶⁰. Our findings indicate that the higher preference of 226 Omicron for bronchioles is dictated by mutations in the spike protein. We speculate that both Omi-227 S and Omicron enter the bronchiolar epithelium of K18-hACE2 mice, yet only Omi-S replicates to 228 high enough levels to manifest in overt bronchiolar injury. The preference of Omicron spike for bronchiolar epithelium is likely mediated by its improved efficiency to utilize Cathepsin B/L⁵⁸⁻⁶², 229 230 which form an active viral entry pathway in bronchioles and other airway cells^{59,63}. In contrast, SARS-CoV-2 entry into alveolar epithelial cells is mainly driven by TMPRSS2^{36,64}, which Omicron 231 232 spike is deficient in utilizing^{60,65}, leading to poor infection of these cells^{3,37,58,60}. These findings 233 explain the higher transmission and lower lung pathology caused by Omicron.

Our study shows that mutations in the RBM of Omicron spike are the major determinants of the viral escape from neutralizing antibodies, although mutations in other regions of spike also contribute. Within the RBM, we identify two hotspots of mutations, which impart on Omicron spike the ability to resist neutralization: one bearing the E484A substitution and the other harboring a cluster of five substitutions, Q493R, G496S, Q498R, N501Y and Y505H. The E484A substitution

239 has been shown to escape neutralization by convalescent sera⁶⁶. Further, structural modeling 240 suggests that some therapeutic monoclonal antibodies establish highly stable salt bridges with 241 the E484 residue, entirely losing their binding when this residue is changed to A or upon Q493K 242 and Y505H changes⁶⁷. Similarly, mapping of RBM residues that directly interact with 49 known 243 neutralizing antibodies revealed N440, G446, S477, and T478 as low-frequently interactors. 244 N501, Y505, and Q498 as medium-frequency interactors, and E484 and Q493 as high-frequency 245 interactors⁶⁸, which is in line with our neutralization assay results. Interestingly, while antibodybinding potential of Omicron spike is impaired⁶⁹, its receptor-binding capacity is intact. In fact, the 246 247 Omicron RBD has higher affinity for ACE2 relative to the Wuhan-Hu-1 and Delta RBDs⁶⁰. This 248 indicates that mutations in the Omicron spike have evolved in such a manner that they hinder 249 antibody binding but preserve the receptor engagement. This opens up the possibility of targeting 250 the conserved and structurally constrained regions of spike involved in ACE2 recognition for the 251 design of broad-spectrum vaccines to control the current COVID-19 pandemic.

252 MATERIALS AND METHODS

253 Cells, antibodies, and plasmids

The cell lines were incubated at 37°C and 5% CO₂ in a humidified incubator. Human embryonic kidney HEK293T cells (ATCC; CRL-3216), human lung adenocarcinoma A549 cells (ATCC; CCL-185), human colorectal adenocarcinoma Caco-2 cells (ATCC; HTB-37), and African green monkey kidney Vero E6 cells were maintained in DMEM (Gibco; #11995-065) containing 10% FBS and 1X non-essential amino acids. Lentiviral delivery system was used to generate cells stably expressing human ACE2 and TMPRSS2. Mycoplasma negative status of all cell lines was
 confirmed.

Anti-SARS-CoV nucleocapsid (N) protein antibody (Rockland; #200-401-A50) was used for detection of the SARS-CoV-2 N protein by IF. Expression plasmid encoding the spike protein of the SARS-CoV-2 Wuhan isolate, pCSII-SARS-CoV-2 F8, was a kind gift from Yoshiharu Matsuura³². We replaced the Wuhan spike in this plasmid with a chemically synthesized version of Omicron spike and called the resulting plasmid pCSII-SARS-CoV-2 F8_Omicron. The lentiviral vectors, pLOC_hACE2_PuroR and pLOC_hTMPRSS2_BlastR, containing human ACE2 and TMPRSS2, respectively, have been previously described³³.

268 **Omicron stock preparation and titration**

269 All procedures were performed in a biosafety level 3 (BSL3) facility at the National 270 Emerging Infectious Diseases Laboratories of the Boston University using biosafety protocols 271 approved by the institutional biosafety committee (IBC). The SARS-CoV-2 BA.1 Omicron virus 272 stock was generated in ACE2/TMPRSS2/Caco-2 cells. Briefly, 5 x 10⁵ cells, grown overnight in 273 DMEM/10%FBS/1X NEAA in one well of a 6-well plate, were inoculated with the collection 274 medium in which the nasal swab from a SARS-CoV-2 patient was immersed. The swab material 275 was obtained from the Department of Public Health, Massachusetts, and it contained the 276 sequence-verified Omicron virus (NCBI accession number: OL719310). Twenty-four hours after 277 infecting cells, the culture medium was replaced with 2 ml of DMEM/2%FBS/1X NEAA and the 278 cells were incubated for another 72h, at which point the CPE became visible. The culture medium 279 was harvested, passed through a 0.45 μ filter, and kept at -80°C as a P0 virus stock. To generate 280 a P1 stock, we infected 1 x 10⁷ ACE2/TMPRSS2/Caco-2 cells, seeded the day before in a T175

281 flask, with the P0 virus at an MOI of 0.01. The next day, the culture medium was changed to 25 282 ml of 2% FBS-containing medium. Three days later, when the cells exhibited excessive CPE, the 283 culture medium was harvested, passed through a 0.45 μ filter, and stored at -80°C as a P1 stock. 284 To titrate the virus stock, we seeded ACE2/TMPRSS2/Caco-2 cells into a 12-well plate at 285 a density of 2 x 10⁵ cells per well. The next day, the cells were incubated with serial 10-fold 286 dilutions of the virus stock (250 μ l volume per well) for 1h at 37°C, overlayed with 1 ml per well of 287 medium containing 1:1 mixture of 2X DMEM/4% FBS and 1.2% Avicel (DuPont; RC-581), and 288 incubated at 37°C for another three days. To visualize the plagues, the cell monolayer was fixed 289 with 4% paraformaldehyde and stained with 0.1% crystal violet, with both fixation and staining 290 performed at room temperature for 30 minutes each. The number of plaques were counted and 291 the virus titer was calculated.

292 Recombinant SARS-CoV-2 generation by CPER

293 SARS-CoV-2 recombinant viruses were generated by using a modified form of the recently 294 published CPER protocol^{32,70}. Full-length SARS-CoV-2 cDNA cloned onto a bacterial artificial chromosome (BAC)³⁰ was used as a template to amplify the viral genome into eight overlapping 295 296 fragments (F1, F2, F3, F4, F5, F6, F7, and F9). The pCSII-SARS-CoV-2 F8 and pCSII-SARS-297 CoV-2 F8_Omicron plasmids, which were used to generate spike mutants, served as templates 298 for amplification of fragment 8 (F8). A UTR linker containing a hepatitis delta virus ribozyme 299 (HDVr), the bovine growth hormone polyadenylation signal sequence (BGH-polyA), and a 300 cytomegalovirus (CMV) promoter was cloned onto a pUC19 vector and used as a template to 301 amplify the linker sequence. The 5' termini of all ten DNA fragments (F1-F9 and the linker) were 302 phosphorylated by using T4 PNK (NEB; #M0201), and the equimolar amounts (0.05 pmol each)

303 of the resulting fragments were subjected to a CPER reaction in a 50 μ l volume using 2 μ l of 304 PrimeStar GXL DNA polymerase (Takara Bio; #R050A). The following cycling conditions were 305 used for CPER: an initial denaturation at 98°C for 2 min; 35 cycles of denaturation at 98°C for 10 306 s, annealing at 55°C for 15 s, and extension at 68°C for 15 min; and a final extension at 68°C for 307 15 min. The nicks in the circular product were sealed by using DNA ligase.

308 To transfect cells with the CPER product, we seeded ACE2/TMPRSS2/Caco-2 cells into a 6-well plate at a density of 5 x10⁵ cells per well. The transfection mix was prepared by mixing 26 309 310 μ of the original 52 μ CPER reaction volume with 250 μ of Opti-MEM (Thermo Fisher Scientific: 311 #31985070) and 6 μ I of TransIT-X2 Dynamic Delivery System (Mirus Bio; #MIR 6000). Following 312 incubation at room temperature for 25 min, the transfection mix was added to the cells. The next 313 day, the culture medium was replaced with fresh DMEM containing 2% FBS. The CPE became 314 visible in 3-4 days, at which point the culture medium was collected and stored as a P0 virus 315 stock. The P0 stock was used for experiments described in this manuscript. The spike region of 316 all CPER-generated viruses was sequenced by either Sanger sequencing or next generation sequencing to confirm the presence of desired and the absence of adventitious changes. 317

318

SARS-CoV-2 neutralization assay

For neutralization assays, initial 1:10 dilutions of plasma, obtained from individuals who received two shots of either Moderna or Pfizer mRNA-based SARS-CoV-2 vaccine, were five-fold serial diluted in Opti-MEM over seven or eight dilutions. These plasma dilutions were then mixed at a 1:1 ratio with 1.25×10^4 infectious units of SARS-CoV-2 and incubated for 1h at 37°C. Thereafter, 100 μ l of this mixture was directly applied to ACE2/A549 cells seeded the previous day in poly-L-lysine-coated 96-well plates at a density of 2.5 x 10⁴ cells per well in 100 μ volume. Thus, the final starting dilution of plasma was 1:20 and the final MOI was 0.5. The cells were incubated at 37°C for 24h, after which they were fixed and stained with an anti-nucleocapsid antibody. When PBS instead of plasma was used as a negative control, these infection conditions resulted in around 40-50% infected cells at 24 hpi.

329 Generation and infection of iAT2 cells

330 The detailed protocol for generation of human iPSC-derived alveolar epithelial type II cells 331 (iAT2s) has been published in our recent papers^{36,71}. The air-liquid interface (ALI) cultures were established by preparing single cell suspensions of iAT2 3D sphere cultures grown in Matrigel. 332 333 Briefly, Matrigel droplets containing iAT2 spheres were dissolved in 2 mg/ml dispase (Sigma) and 334 the spheres were dissociated in 0.05% trypsin (GIBCO) to generate a single-cell suspension. 6.5 335 mm Transwell inserts (Corning) were coated with dilute Matrigel (Corning) in accordance with the 336 manufacturer's protocol. Single-cell iAT2s were plated on Transwells at a density of 520,000 337 cells/cm2 in 100 μ l of CK+DCI medium containing 10 μ M of Rho-associated kinase inhibitor ("Y"; 338 Sigma Y-27632). 600 μ l of this medium was added to the basolateral compartment. 24h after 339 plating, the basolateral medium was changed with fresh CK+DCI+Y medium. 48h after plating, 340 the apical medium was aspirated to initiate ALI culture. 72h after plating, basolateral medium was 341 replaced with CK+DCI medium to remove the rho-associated kinase inhibitor. Basolateral medium 342 was changed every two days thereafter. The detailed composition of CK+DCI medium is provided in our previous publications^{36,71}. 343

iAT2 cells in ALI cultures were infected with purified SARS-CoV-2 stock at an MOI of 2.5 based on the titration done on ACE2/TMPRSS2/Caco-2 cells. For infection, 100 μ l of inoculum prepared in 1X PBS (or mock-infected with PBS-only) was added to the apical chamber of each

347 Transwell and incubated for 2h at 37°C followed by the removal of the inoculum and washing of 348 the apical side three times with 1X PBS (100 μ l/wash). The cells were incubated for two or four 349 days, after which the newly released virus particles on the apical side were collected by adding 100 µl of 1X PBS twice to the apical chamber and incubating at 37°C for 15 min. The number of 350 351 infectious virus particles in the apical washes were measured by the plaque assay on ACE2/TMPRSS2/Caco-2 cells. For flow cytometry, iAT2 cells were detached by adding 0.2 ml 352 353 Accutase (Sigma; #A6964) apically and incubated at room temperature for 15 min. The detached 354 cells were pelleted by low-speed centrifugation, fixed in 10% formalin, and stained with anti-SARS-CoV-2 N antibody. 355

356 Mice maintenance and approvals

357 Mice was maintained in a facility accredited by the Association for the Assessment and 358 Accreditation of Laboratory Animal Care (AAALAC). Animal studies were performed following the 359 recommendations in the Guide for the Care and Use of Laboratory Animals of the National 360 Institutes of Health. The protocols were approved by the Boston University Institutional Animal 361 Care and Use Committee (IACUC). Heterozygous K18-hACE2 C57BL/6J mice (Strain 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) were purchased from the Jackson Laboratory (Jax, Bar Harbor, ME). 362 363 Animals were housed in ventilated cages (Tecniplast, Buguggiate, Italy) and maintained on a 364 12:12 light cycle at 30-70% humidity, ad-libitum water, and standard chow diets (LabDiet, St. 365 Louis, MO).

366 Mice infection

367 Twelve to twenty weeks old male and female K18-hACE2 mice were inoculated intranasally 368 with 10⁴ PFU of SARS-CoV-2 in 50 μ l of sterile 1X PBS. The inoculations were performed under

369 1-3% isoflurane anesthesia. Twenty-six mice (6 for WT, 10 for Omi-S, and 10 for Omicron) were 370 enrolled in a 14-day survival study, and another 42 mice (14 for each of the WT, Omi-S, and 371 Omicron viruses) were used for virological and histological analysis of infected lungs. During the 372 survival study, the animals were monitored for body weight, respiration, general appearance, 373 responsiveness, and neurologic signs. An IACUC-approved clinical scoring system was used to 374 monitor disease progression and define humane endpoints. The score of 1 was given for each of 375 the following situations: body weight, 10-19% loss; respiration, rapid and shallow with increased 376 effort; appearance, ruffled fur and/or hunched posture; responsiveness, low to moderate 377 unresponsiveness; and neurologic signs, tremors. The sum of these individual scores constituted 378 the final clinical score. Animals were considered moribund and humanly euthanized in case of 379 weight loss greater than or equal to 20%, or if they received a clinical score of 4 or greater for two 380 consecutive days. Body weight and clinical score were recorded once per day for the duration of 381 the study. For the purpose of survival curves, animals euthanized on a given day were counted 382 dead the day after. Animals found dead in cage were counted dead on the same day. For 383 euthanization, an overdose of ketamine was administered followed by a secondary method of 384 euthanization.

For quantification of SARS-CoV-2 infectious particles in lungs by the plaque assay, lung tissues were collected in 600 μ l of RNAlater stabilization solution (ThermoFisher Scientific; #AM7021) and stored at -80°C until analysis. 20-40 mg of tissue was placed in a tube containing 600 μ l of OptiMEM and a 5 mm stainless steel bead (Qiagen; #69989) and homogenized in the Qiagen TissueLyser II by two dissociation cycles (1,800 oscillations/minute for 2 minutes) with a one-minute interval between cycles. The homogenate was centrifuged at 15,000 xg for 10 minutes

at room temperature and the supernatant was transferred to a new tube. Ten-fold serial dilutions
 of this supernatant were used for the plaque assay on ACE2/TMPRSS2/Caco-2 cells, as
 described above.

394 For IHC and histologic analysis, the insufflated whole lung tissues were inactivated in 10% 395 neutral buffered formalin at a 20:1 fixative to tissue ratio for a minimum of 72h before removal 396 from BSL3 in accordance with an approved IBC protocol. Tissues were subsequently processed. 397 embedded in paraffin and five-micron sections stained with hematoxylin and eosin (H&E) following 398 standard histological procedures. IHC was performed using a Ventana BenchMark Discovery 399 Ultra autostainer (Roche Diagnostics, USA). An anti-SARS-CoV-2 S antibody (Cell Signaling 400 technologies: clone E5S3V) that showed equivalent immunoreactivity against WT and Omicron 401 spike was used to identify virus-infected cells. Negative and positive controls for IHC included 402 blocks of uninfected and SARS-CoV-2-infected Vero E6 cells, respectively.

403 Flow cytometry

For flow cytometry, fixed cells were permeabilized in 1x permeabilization buffer (ThermoFisher Scientific; #00-5523-00) and stained with SARS-CoV-2 nucleocapsid antibody (Rockland; #200-401-A50, 1:1,000), followed by donkey anti-rabbit IgG-AF647 secondary antibody (ThermoFisher Scientific; #A-31573). Gating was based on uninfected stained control cells. The extent of staining was quantified using a BD LSR II flow cytometer (BD Biosciences, CA), and the data were analyzed with FlowJo v10.6.2 (FlowJo, Tree Star Inc).

410 Immunofluorescence

411 Immunofluorescence was performed as described in our previous publication³³. Briefly, 412 virus-infected cells were fixed in 4% paraformaldehyde and permeabilized in a buffer containing 413 0.1% Triton X-100 prepared in PBS. Following blocking in a buffer containing 0.1% Triton X-100, 414 10% goat serum, and 1% BSA, the cells were incubated overnight at 4°C with anti-SARS-CoV 415 Nucleocapsid antibody (1:2,000 dilution). The cells were then stained with Alexa Fluor 568-416 conjugated goat anti-rabbit secondary antibody (1:1000 dilution) (Invitrogen; #A11008) in the dark 417 at room temperature for 1h and counterstained with DAPI. Images were captured using the 418 ImageXpress Micro Confocal (IXM-C) High-Content Imaging system (Molecular Devices) with a 419 4x S Fluor objective lens at a resolution of 1.7 micron/pixel in the DAPI (excitation: 400 nm/40 nm, 420 emission: 447 nm/60 nm) and TexasRed (excitation: 570nm/80nm, emission: 624nm/40nm) 421 channels. Both channels were used to establish their respective laser autofocus offsets. The 422 images were analyzed using MetaXpress High Content Image Acquisition and Analysis software 423 (Molecular Devices). First, the images were segmented using the CellScoring module. The 424 objects between 7 and 20 microns in diameter and greater than 1800 gray level units in intensity 425 were identified and classified as nuclei. Positive cells were taken as nuclei having TexasRed 426 signal of 1500 gray level units or above within 10 to 20 microns of each nucleus. The remaining 427 objects were set to negative cells. From these objects, the following readouts were measured and 428 used for downstream analysis: Total number of positive and negative cells, total area of positive 429 cells, and integrated intensity in the TexasRed channel for positive cells. To calculate the 50% 430 neutralizing dilution (ND₅₀), we performed a non-linear regression curve fit analysis using Prism 9 431 software (GraphPad).

432 **ACKNOWLEDGEMENT**

433 We thank Dr. Yoshiharu Matsuura from Osaka University, Japan, for providing the pCSII-434 SARS-CoV-2 F8 plasmid; the Department of Public Health, Massachusetts, for providing the 435 clinical specimen containing Omicron virus; and the ICCB-Longwood Screening Facility of 436 Harvard Medical School for assistance with IF image acquisition and analysis. This work was 437 supported by Boston University startup funds (to MS and FD), National Institutes of Health, NIAID 438 grants R01 AI159945 (to SB and MS) and R37 AI087846 (to MUG), NIH SIG grants S10-439 OD026983 and SS10-OD030269 (to NAC), Peter Paul Career Development Award (to FD), and BMBF SenseCoV2 01KI20172A (AE) and DFG Fokus COVID-19, EN 423/7-1 (AE). We thank the 440 441 Clinical & Translational Science Institute (CTSI; 1UL1TR001430) and Evans Center for 442 Interdisciplinary Biomedical Research at Boston University School of Medicine for their support of 443 the Affinity Research Collaborative on 'Respiratory Viruses: A Focus on COVID-19'.

444 **AUTHOR CONTRIBUTIONS**

445 M.S. conceptualized the study. DYC, AHT, DK, CVC, NK, HLC, FD, and MS performed 446 experiments. GL and MUG established and provided the modified CPER system. NAC performed 447 histopathologic and IHC analysis of mouse lungs. SCB and MB provided scientific input and 448 helped secure funds. AH and AE provided BAC harboring the SARS-CoV-2 genome. JHC 449 provided the Omicron isolate. YK provided plasma samples. MS wrote the manuscript, which was 450 read, edited, and approved by all authors.

451

452

454

455 **REFERENCES**

- 456 1 Suzuki, R. *et al.* Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant.
 457 *Nature*, doi:10.1038/s41586-022-04462-1 (2022).
- Halfmann, P. J. *et al.* SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.
 Nature, doi:10.1038/s41586-022-04441-6 (2022).
- Shuai, H. *et al.* Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. *Nature*, doi:10.1038/s41586-022-04442-5 (2022).
- 462 4 Dejnirattisai, W. *et al.* SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from 463 neutralizing antibody responses. *Cell* **185**, 467-484 e415, doi:10.1016/j.cell.2021.12.046 (2022).
- 4645VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes465neutralization by therapeutic monoclonal antibodies. Nat Med, doi:10.1038/s41591-021-01678-y466(2022).
- 467 6 Planas, D. *et al.* Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. *Nature*,
 468 doi:10.1038/s41586-021-04389-z (2021).
- 469 7 Liu, L. *et al.* Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. *Nature*,
 470 doi:10.1038/s41586-021-04388-0 (2021).
- 471 8 Hoffmann, M. *et al.* The Omicron variant is highly resistant against antibody-mediated
 472 neutralization: Implications for control of the COVID-19 pandemic. *Cell* 185, 447-456 e411,
 473 doi:10.1016/j.cell.2021.12.032 (2022).
- WHO. *Tracking SARS-CoV-2 variants*, <<u>https://www.who.int/en/activities/tracking-SARS-CoV-2-</u>
 variants/> (2022).
- 476 10 Cele, S. *et al.* Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization.
 477 *Nature* 602, 654-656, doi:10.1038/s41586-021-04387-1 (2022).
- 47811Gu, H. et al. Probable Transmission of SARS-CoV-2 Omicron Variant in Quarantine Hotel, Hong479Kong, China, November 2021. Emerg Infect Dis 28, 460-462, doi:10.3201/eid2802.212422 (2022).
- Iuliano, A. D. *et al.* Trends in Disease Severity and Health Care Utilization During the Early
 Omicron Variant Period Compared with Previous SARS-CoV-2 High Transmission Periods United States, December 2020-January 2022. *MMWR Morb Mortal Wkly Rep* 71, 146-152,
 doi:10.15585/mmwr.mm7104e4 (2022).
- 484 13 CDC. *COVID Data Tracker*, <<u>https://covid.cdc.gov/covid-data-tracker/#variant-proportions</u>> 485 (2022).
- 486 14 CoVariants. *CoVariants*, <<u>https://covariants.org</u>> (2022).
- Taylor, L. Covid-19: Omicron drives weekly record high in global infections. *BMJ* 376, o66, doi:10.1136/bmj.o66 (2022).
- 489 16 Desingu, P. A. & Nagarajan, K. SARS-CoV-2 Omicron variant is spreading in different parts of the
 490 world in three different trends. *J Med Virol*, doi:10.1002/jmv.27646 (2022).
- 491 17 WHO. Statement on Omicron sublineage BA.2. (2022).
- 492 18 Desingu, P. A. & Nagarajan, K. Omicron variant losing its critical mutations in the receptor-binding
 493 domain. *J Med Virol*, doi:10.1002/jmv.27667 (2022).
- 494 19 Desingu, P. A., Nagarajan, K. & Dhama, K. Emergence of Omicron third lineage BA.3 and its
 495 importance. *J Med Virol*, doi:10.1002/jmv.27601 (2022).
- 496 20 Takashita, E. *et al.* Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant.
 497 N Engl J Med, doi:10.1056/NEJMc2119407 (2022).

- Schmidt, F. *et al.* Plasma Neutralization of the SARS-CoV-2 Omicron Variant. *N Engl J Med* 386,
 599-601, doi:10.1056/NEJMc2119641 (2022).
- 50022ImperialCollegeLondon.HospitalisationriskforOmicroncasesinEngland,501<<u>https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-50-severity-502omicron/> (2022).</u>
- 50323Madhi, S. A. et al. Population Immunity and Covid-19 Severity with Omicron Variant in South504Africa. N Engl J Med, doi:10.1056/NEJMoa2119658 (2022).
- 505 24 Sigal, A. Milder disease with Omicron: is it the virus or the pre-existing immunity? *Nat Rev* 506 *Immunol* **22**, 69-71, doi:10.1038/s41577-022-00678-4 (2022).
- 50725Wolter, N. et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in508South Africa: a data linkage study. Lancet **399**, 437-446, doi:10.1016/S0140-6736(22)00017-4509(2022).
- 51026Dyer, O. Covid-19: Omicron is causing more infections but fewer hospital admissions than delta,511South African data show. BMJ 375, n3104, doi:10.1136/bmj.n3104 (2021).
- 512 27 Haseltine, W. A. in Understanding Omicron: Changes In The Spike Protein And Beyond And What
 513 They Portend (2021).
- 514 28 Smyth, D. S. *et al.* Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. *Nat* 515 *Commun* **13**, 635, doi:10.1038/s41467-022-28246-3 (2022).
- 516 29 Kirby, A. E. *et al.* Notes from the Field: Early Evidence of the SARS-CoV-2 B.1.1.529 (Omicron)
 517 Variant in Community Wastewater United States, November-December 2021. *MMWR Morb*518 *Mortal Wkly Rep* 71, 103-105, doi:10.15585/mmwr.mm7103a5 (2022).
- Herrmann, A. *et al.* Cloning of a Passage-Free SARS-CoV-2 Genome and Mutagenesis Using Red
 Recombination. *Int J Mol Sci* 22, doi:10.3390/ijms221910188 (2021).
- 521 31 Amarilla, A. A. *et al.* A versatile reverse genetics platform for SARS-CoV-2 and other positive-522 strand RNA viruses. *Nat Commun* **12**, 3431, doi:10.1038/s41467-021-23779-5 (2021).
- 523 32 Torii, S. *et al.* Establishment of a reverse genetics system for SARS-CoV-2 using circular 524 polymerase extension reaction. *Cell Rep* **35**, 109014, doi:10.1016/j.celrep.2021.109014 (2021).
- 525 33 Chen, D. Y. *et al.* SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. *J Virol*526 95, e0086221, doi:10.1128/JVI.00862-21 (2021).
- Mulay, A. *et al.* SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling
 and drug discovery. *Cell Rep* 35, 109055, doi:10.1016/j.celrep.2021.109055 (2021).
- S29 35 Carcaterra, M. & Caruso, C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. *Med Hypotheses* 146, 110412, doi:10.1016/j.mehy.2020.110412 (2021).
- 532 36 Huang, J. *et al.* SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar
 533 Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. *Cell Stem Cell* 27, 962534 973 e967, doi:10.1016/j.stem.2020.09.013 (2020).
- 535 37 Halfmann, P. J. *et al.* SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.
 536 *Nature*, doi:10.1038/s41586-022-04441-6 (2022).
- Winkler, E. S. *et al.* SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung
 inflammation and impaired function. *Nat Immunol* 21, 1327-1335, doi:10.1038/s41590-020-07782 (2020).
- S40 39 Chen, R. E. *et al.* In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. *Nature*S96, 103-108, doi:10.1038/s41586-021-03720-y (2021).
- 54240Cecon, E. *et al.* Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice543infected with SARS-CoV-2. J Pineal Res 72, e12772, doi:10.1111/jpi.12772 (2022).

- Lutz, C., Maher, L., Lee, C. & Kang, W. COVID-19 preclinical models: human angiotensinconverting enzyme 2 transgenic mice. *Hum Genomics* 14, 20, doi:10.1186/s40246-020-00272-6
 (2020).
- Mariano Carossino, D. K., Aoife K. O'Connell, Paige Montanaro, Anna E. Tseng, Hans P. Gertje,
 Kyle A. Grosz, Maria Ericsson, Bertrand R. Huber, Susanna A. Kurnick, Saravanan Subramaniam,
 Thomas A. Kirkland, Joel R. Walker, Kevin P. Francis, Alexander D. Klose, Neal Paragas, Markus
 Bosmann, Mohsan Saeed, Udeni B. R. Balasuriya, Florian Douam, Nicholas A. Crossland Fatal
 Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent
 on hACE2 Expression. *Viruses* 14 (2022).
- 55343Ai, J. et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants554to immune sera elicited by vaccines after boost. Emerg Microbes Infect 11, 337-343,555doi:10.1080/22221751.2021.2022440 (2022).
- Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARSCoV-2 spike protein: potential antivirus drug development for COVID-19. *Acta Pharmacol Sin* 41, 1141-1149, doi:10.1038/s41401-020-0485-4 (2020).
- Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2
 receptor. *Nature* 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
- 561 46 Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal 562 domain target single supersite. Cell Host Microbe 819-833 а 29. e817. 563 doi:10.1016/j.chom.2021.03.005 (2021).
- 56447Chi, X. *et al.* A neutralizing human antibody binds to the N-terminal domain of the Spike protein of565SARS-CoV-2. Science 369, 650-655, doi:10.1126/science.abc6952 (2020).
- Voss, W. N. *et al.* Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD
 spike epitopes. *Science* 372, 1108-1112, doi:10.1126/science.abg5268 (2021).
- Premkumar, L. *et al.* The receptor binding domain of the viral spike protein is an immunodominant
 and highly specific target of antibodies in SARS-CoV-2 patients. *Sci Immunol* 5,
 doi:10.1126/sciimmunol.abc8413 (2020).
- 571 50 Ju, B. *et al.* Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* 584, 115 572 119, doi:10.1038/s41586-020-2380-z (2020).
- 573 51 Piccoli, L. *et al.* Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike
 574 Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell* 183, 1024-1042
 575 e1021, doi:10.1016/j.cell.2020.09.037 (2020).
- 576 52 Vogel, A. B. *et al.* BNT162b vaccines protect rhesus macaques from SARS-CoV-2. *Nature* 592, 283-289, doi:10.1038/s41586-021-03275-y (2021).
- 578
 53
 Chang, M. C., Hild, S. & Grieder, F. Nonhuman primate models for SARS-CoV-2 research:

 579
 Consider alternatives to macaques. Lab Anim (NY) 50, 113-114, doi:10.1038/s41684-021-00755-6

 580
 (2021).
- 58154Oladunni, F. S. *et al.* Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting582enzyme 2 transgenic mice. Nat Commun 11, 6122, doi:10.1038/s41467-020-19891-7 (2020).
- 583 55 Yinda, C. K. *et al.* K18-hACE2 mice develop respiratory disease resembling severe COVID-19.
 584 *PLoS Pathog* 17, e1009195, doi:10.1371/journal.ppat.1009195 (2021).
- 585 56 Gan, E. S. *et al.* A mouse model of lethal respiratory dysfunction for SARS-CoV-2 infection. 586 *Antiviral Res* **193**, 105138, doi:10.1016/j.antiviral.2021.105138 (2021).
- 587 57 Kumari, P. *et al.* Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV588 2 in K18-hACE2 Mice. *Viruses* 13, doi:10.3390/v13010132 (2021).

- 589 58 Hui, K. P. Y. *et al.* SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo.
 590 *Nature*, doi:10.1038/s41586-022-04479-6 (2022).
- 59 Thomas P. Peacock, J. C. B., Jie Zhou, Nazia Thakur, Joseph Newman, Ruthiran Kugathasan,
 592 Ksenia Sukhova, Myrsini Kaforou, Dalan Bailey, Wendy S. Barclay. The SARS-CoV-2 variant,
 593 Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the
 594 endosomal route of entry. *bioRxiv*, doi:<u>https://doi.org/10.1101/2021.12.31.474653</u> (2022).
- 595 60 Meng, B. *et al.* Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and 596 fusogenicity. *Nature*, doi:10.1038/s41586-022-04474-x (2022).
- 597 61 Du, X. *et al.* Omicron adopts a different strategy from Delta and other variants to adapt to host. 598 *Signal Transduct Target Ther* 7, 45, doi:10.1038/s41392-022-00903-5 (2022).
- 599 Pranesh Padmanabhan, N. M. D. Evidence of increased Cathepsin B/L and decreased TMPRSS2 62 600 SARS-CoV-2 Omicron usage for cell entry by the variant. bioRxiv, 601 doi:https://doi.org/10.1101/2022.01.13.476267 (2022).
- 63 Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F. & Matsuyama, S. Simultaneous treatment
 603 of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute
 604 respiratory syndrome coronavirus entry. *J Virol* 86, 6537-6545, doi:10.1128/JVI.00094-12 (2012).
- 605 64 Grau-Exposito, J. *et al.* Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells. *PLoS Pathog* **18**, e1010171, doi:10.1371/journal.ppat.1010171 (2022).
- 60765Zhao, H. et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity608when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 11, 277-609283, doi:10.1080/22221751.2021.2023329 (2022).
- 66 Liu, Z. *et al.* Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum
 611 antibody neutralization. *Cell Host Microbe* 29, 477-488 e474, doi:10.1016/j.chom.2021.01.014
 612 (2021).
- 613 67 Shah, M. & Woo, H. G. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger
 614 Binding to ACE2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. *Front*615 *Immunol* 12, 830527, doi:10.3389/fimmu.2021.830527 (2021).
- 616 68 Ye, G., Liu, B. & Li, F. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain.
 617 Nat Commun 13, 1214, doi:10.1038/s41467-022-28882-9 (2022).
- 618 69 Carreno, J. M. *et al.* Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron.
 619 *Nature* 602, 682-688, doi:10.1038/s41586-022-04399-5 (2022).
- 620 70 Tamura, T. et al. Generation and characterization of genetically and antigenically diverse infectious 621 clones of dengue virus serotypes 1-4. Emerg Microbes Infect 11, 227-239, 622 doi:10.1080/22221751.2021.2021808 (2022).
- 62371Jacob, A. *et al.* Derivation of self-renewing lung alveolar epithelial type II cells from human624pluripotent stem cells. Nat Protoc 14, 3303-3332, doi:10.1038/s41596-019-0220-0 (2019).
- 625

626 FIGURE LEGENDS

- 627 Fig. 1: Generating Recombinant SARS-Co-2 by CPER. a, Schematic overview of mutations in
- 628 Omicron spike (in comparison to the SARS-CoV-2 Wuhan-Hu-1 isolate; NCBI accession number:
- 629 NC_045512). Numbering is based on Wuhan-Hu-1 sequence. Mutations not reported in previous

630 variants of concern are shown in red. NTD, N-terminal domain; RBD, receptor-binding domain; 631 RBM, receptor-binding motif. **b**, Location of Omicron mutations on the trimeric spike protein. 632 Domains are colored according to a. c, Schematic of recombinant SARS-CoV-2 generated by 633 CPER. S, spike; N, nucleocapsid. d, ACE2/TMPRSS2/Caco-2 cells transfected with the SARS-634 CoV-2 CPER product were stained with an anti-nucleocapsid antibody on indicated days post-635 transfection. DAPI was used to stain the cell nuclei. NC, negative control generated by omitting 636 Fragment 9 from the CPER reaction. e, Virus titer in the culture medium of the transfected cells 637 at indicated days post-transfection, as measured by the plaque assay. The data are plotted as mean ± SEM of two experimental repeats. 638

639 Fig. 2: Effect of spike on in vitro growth kinetics of Omicron. a, Schematic of viruses used in 640 this figure. S, spike; N, nucleocapsid. b-e, ACE2/TMPRSS2/Caco-2 and Vero E6 cells were 641 infected at an MOI of 0.01, and the percentage of nucleocapsid (N)-positive cells (n = 6) (**b.c**) and 642 levels of infectious virus production (n = 3) (d,e) were determined by flow cytometry and the 643 plaque assay, respectively. f, The cell viability of SARS-CoV-2-infected ACE2/TMPRSS2/Caco-2 644 cells (MOI of 0.1) was quantified by the CellTiter-Glo assay at indicated time points. The P values 645 reflect a statistically significant difference between Omi-S and Omicron. g, Plague sizes. Left, 646 representative images of plaques on ACE2/TMPRSS2/Caco-2 cells. Right, diameter of plaques 647 is plotted as mean ± SD of 20 plagues per virus. h, Human induced pluripotent stem cell-derived 648 alveolar type 2 epithelial cells were infected at an MOI of 2.5 for 48h or 96h. The apical side of 649 cells was washed with 1X PBS and the levels of infectious virus particle were measured by the 650 plaque assay. n = 4. Data are mean \pm SD from the indicated number of biological replicates. 651 Experiments were repeated twice, with each experimental repeat containing 2 (h) or 3 (b-g)

replicates. *p* values were calculated by a two-tailed, unpaired *t*-test with Welch's correction. **p* < 0.05, ***p* < 0.01, ****p* < 0.001, and *****p* < 0.0001; ns, not significant.

654 Fig. 3: Role of spike in Omicron pathogenicity. a-c, Male and female K18-hACE2 mice (aged 12-20 weeks) were intranasally inoculated with 1 x 10⁴ PFU of WT (n = 6), Omi-S (n = 10), or 655 656 Omicron (n = 10). Two independently generated virus stocks were used in this experiment. The 657 body weight (a), clinical score (b), and survival (c) were monitored daily for 14 days. Animals 658 losing 20% of their initial body weight were euthanized. d,e, K18-hACE2 mice were intranasally 659 inoculated with 1 x 10⁴ PFU of WT (n = 7), Omi-S (n = 7), and Omicron (n = 7). Lung samples of 660 the infected mice were collected at 2 or 4 dpi to determine the viral titer (n = 4) (d) or for 661 immunohistochemistry (IHC) detection of the S protein (n = 3) (e). In e, representative images of 662 IHC staining for the detection of the SARS-CoV-2 S protein (brown color) in alveoli (arrows) and 663 bronchioles (arrowheads) in the lungs of the infected mice at 2 dpi are shown. (Scale bar = 100 664 μ m). f, The percentage of S-positive bronchioles in the lungs of infected mice. Each dot represents 665 an infected animal. Data are presented as mean \pm SD from the indicated number of biological 666 replicates. Statistical significance was determined using two-tailed, unpaired t-test with Welch's 667 correction (**a,b,d,f**) and log-rank (Mantel-Cox) test (**c**). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p = 0.001, and ****p = 0.001, ***p < 0.0668 < 0.0001; ns, not significant.

Fig. 4: Role of spike in immune resistance of Omicron. a, ND₅₀ values for WA1, Omi-S, and Omicron in sera from individuals who received two shots of Moderna (donor 1-12) or Pfizer (donor 13-24) vaccine (further details of sera are provided in Extended Data Table 1; individual curves are shown in Extended Data Fig. 4). b, Trajectories of ND₅₀ values against WA1, Omi-S, and Omicron (the data from a is plotted). Fold-change in ND₅₀ values is indicated. **c,d,e,f,** Schematic of the chimeric (**top panels; c,d**) and mutant (**top panels; e,f**) viruses. The amino acid numbering for WA1 mutants in e is based on the WA1 spike sequence, whereas the numbering for Omicron mutants in f is based on the Omicron spike sequence. Six of the 24 sera (three from Moderna and three from Pfizer) were tested. Each serum sample is represented by a dot of specific color. The data are plotted as fold-change of the parental virus. Statistical significance was determined using a two-tailed, unpaired *t* test with Welch's correction. **p* <0.05, ***p* <0.01, ****p* <0.001, and *****p* < 0.0001; ns, not significant.

681 EXTENDED DATA FIGURES

682 Extended Data Fig. 1: Schematic representation of CPER to generate recombinant SARS-

CoV-2. The SARS-CoV-2 genome was amplified into nine overlapping fragments. These fragments and a linker (containing a hepatitis delta virus ribozyme, a poly-A signal, and a CMV promoter) were treated with PNK to phosphorylate 5' ends. The 5'-end phosphorylated fragments were then stitched together by CPER, and the nicks in the resulting circular DNA molecule were closed by treatment with DNA ligase. The CPER product was transfected into cells to rescue virus particles.

Extended Data Fig. 2: Clinical signs of Omi-S-infected mice. K18-hACE2 mice (n = 10) inoculated intranasally with 1 x 10⁴ PFU of Omi-S and described in Fig. 3a-c were monitored for body weight (**a**) and clinical score (**b**). Animals losing 20% of their body weight (8 out of 10) were euthanized. The surviving animals did not show any signs of distress.

693 **Extended Data Fig. 3: Lung pathology induced by Omi-S.** The lungs of the male and female 694 K18-hACE2 mice intranasally inoculated with 1 x 10⁴ PFU of WT, Omi-S, and Omicron were 695 collected at 2 dpi for histological analysis. **a**, Representative images of hematoxylin and eosin (H&E) staining for the detection of bronchiolar damage in the lungs of the infected mice. The bronchiolar epithelial necrosis is shown with arrows. Note that the necrosis was no longer evident at 4 dpi in any cohort. **b**, Immunohistochemistry (IHC) staining for the detection of SARS-CoV-2 S protein in the same area where bronchiolar necrosis was seen. The only bronchiole found to be positive for Omicron is shown. No evidence of necrosis was seen for this bronchiole. (Scale bar = 100 μ m).

Extended Data Fig. 4: Individual neutralization data. Individual neutralization curves for the data presented in Fig. 4a,b are shown. The data represent the mean \pm SD of three technical replicates. The curves were calculated based on a non-linear regression curve fit analysis in Prism. The dotted lines represent the limit of detection.

Fixtended Data Table 1: Overview of serum samples used for the analysis of antibody neutralization of WA1, Omi-S, and Omicron. *Days after the second vaccine shot. **The spike antibody titer was measured by Abbott's SARS-CoV-2 immunoassays.

709

710

Days post-transfection

Hours post-infection

Fig. 3

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.13.512134; this version posted October 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Extended Data Fig. 1

Extended Data Fig. 2

Omicron

b

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.13.512134; this version posted October 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Extended Data Table 1

Serum no.	Sex	Race	Age	Days post- vaccination*	Vaccine (Manufacturer)	Spike Ab titer (AU/ml)**
1	Male	White	59	18	mRNA-1273 (Moderna)	39823.0
2	Male	Black	26	37	mRNA-1273 (Moderna)	26978.7
3	Male	Asian	55	34	mRNA-1273 (Moderna)	24880.7
4	Male	White	39	32	mRNA-1273 (Moderna)	23816.7
5	Male	Asian	45	38	mRNA-1273 (Moderna)	21659.5
6	Male	White	30	32	mRNA-1273 (Moderna)	18986.5
7	Female	Asian	47	35	mRNA-1273 (Moderna)	100000.0
8	Female	White	62	47	mRNA-1273 (Moderna)	69680.0
9	Female	White	39	14	mRNA-1273 (Moderna)	54996.6
10	Female	White	38	32	mRNA-1273 (Moderna)	46494.7
11	Female	White	34	30	mRNA-1273 (Moderna)	43784.0
12	Female	White	57	42	mRNA-1273 (Moderna)	42140.5
13	Male	Mixed	28	51	BNT162b2 (Pfizer-BioNTech)	17623.8
14	Male	White	30	54	BNT162b2 (Pfizer-BioNTech)	16154.5
15	Male	White	29	54	BNT162b2 (Pfizer-BioNTech)	14261.5
16	Male	Asian	48	48	BNT162b2 (Pfizer-BioNTech)	10593.6
17	Male	White	46	60	BNT162b2 (Pfizer-BioNTech)	9752.3
18	Male	White	31	53	BNT162b2 (Pfizer-BioNTech)	8715.2
19	Female	White	55	52	BNT162b2 (Pfizer-BioNTech)	100000.0
20	Female	White	43	47	BNT162b2 (Pfizer-BioNTech)	44385.4
21	Female	White	56	48	BNT162b2 (Pfizer-BioNTech)	39998.5
22	Female	Mixed	44	49	BNT162b2 (Pfizer-BioNTech)	31141.9
23	Female	White	56	50	BNT162b2 (Pfizer-BioNTech)	25969.6
24	Female	White	55	51	BNT162b2 (Pfizer-BioNTech)	23539.1